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The motion of a polyatomic gas in a flat channel under the action of pressure and tem- 
perature gradients was studied in [i]. The problem was solved numerically by using the 
Hanserr-Morse model equation, taking account of the excitation of only one type of internal 
energy. The conclusion in [i] that the effect of thermal transpiration is independent of the 
internal degrees of freedom of the molecules is at variance with current concepts. Up till 
now it was assumed that such a dependence exists. Moreover, this assumption was based on 
an experimental determination of the rotational collision numbers [2]. In view of this, the 
results in [I] require further examination. In the present article we base the description 
of heat and mass transfer processes in a polyatomic gas in a flat channel on a model equa- 
tion [3], which, in contrast with the Hansen-Morse equation used in [i], takes account of the 
possibility of the excitation of two types of internal energy of the molecules, for example 
rotational and vibrational energies. The method of solving the system of integral-moment equa- 
tions gives rather accurate results over the whole range of Knudsen numbers Kn, and in addi- 
tion leads to simple analytic expressions for the fluxes in the limiting cases Kn << 1 and 
Kn >> i. This permits an explicit analysis of the contribution of the internal degrees of free- 
dom of the molecules to thermal creep and to the various components of the heat fluxes result- 
ing from pressure and temperature gradients at various Knudsen numbers. 

We consider the motion of a polyatomic one-component gas between infinite parallel plates 
x = • as a result of longitudinal pressure and temperature gradients along the z axis. 
Rotational and vibrational degrees of freedom of the molecules are excited in the gas. We 
assume that the translational, rotational, and vibrational temperatures of the molecules in 
each cross section of the channel are equal to one another and equal to the temperature T. We 
assume that the state of the gas is weakly perturbed, and that the distribution function for 
molecules in the i-th rotational and the j-th vibrational states is written in the form of a 
small deviation from the Maxwell--Boltzmann distribution: 

D(r)D(v)  /~J = ~ - J  ~o (z) [ t  + h~j (x ,  v)l,  I h~r << t,, 
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n is the number density of the gas, m is the mass of a molecule, P~) is the proba- where 
bility of a state with energy E~), and k is the Boltzmann constant. 

Since intermolecular collisions accompanied by transitions in both the rotational and 
vibrational spectra simultaneously are very rare [4], we neglect them. 

Then, taking account of Eq. (i), the model kinetic equation [3] for the perturbation 
function hij is written in the following dimensionless form: 
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Here U is the macroscopic velocity of the gas, q(t), q(r), and q(V) are the components of 
the heat flux density due respectively to the translational, rotational, and vibrational de- 
grees of freedom of the molecules, p and ~ are respectively the pressure and the dynamic vis- 
cosity of the gas, To is the mean temperature of the gas, c~ and c~ are the contributions of 
the internal degrees of freedom of the molecules to the specific heat at constant volume, 
and the angle brackets denote the average over the internal states of the molecules. The 
relaxation times T~, Trr, Tvv , TDrr, and TDv v for a given intermolecular interaction poten- 
tial can be calculated [4] or taken from experiments [5]. 

If the mean free path of the molecules is defined in the form [4] I = (~/4)T~(8kTo/ 
~m) if2, the rarefaction parameter 5 of the gas is related to the Knudsen number by the equa- 
tion 5 = (r -z 

As a boundary condition we assume completely diffuse scattering of molecules on the 
plates restricting the gas. Then the perturbation function is 

hu(g = --0/2) sign cx, c) = O. (4) 

By linearizing the problem, the solution of Eq. (2) can be written in the form [i] 

T h~j = h~v + hijT. (5) 

By substituting Eq. (5) into Eqs. (2)-(4) and equating the terms for each of the gradi- 
ents, the complete problem is separated into two: The first contains the equations describ- 
ing the heat and mass transfer processes under the action of the pressure gradient, and the 
second under the action of the temperature gradient. 

Waiting Eq. (2) in integral form, taking account of the boundary conditions (4), and sub- 
stituting the expression obtained for the perturbation function into Eqs. (3), it is easy 
to obtain two systems of integral-moment equations for the macroscopic velocities Up and UT, 

and the translational, rotational, and vibrational components of the heat fluxes Q~l)- Q~l) 
(l = t, r, v) due respectively to the pressure and temperature gradients: 
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The a r g u m e n t  o f  t h e  f u n c t i o n  J n  i n  Eqs .  ( 6 ) - ( 9 )  i s  ( 6 ] y  -- Y ' I ) "  E q u a t i o n s  ( 6 ) - ( 9 )  d e t e r -  
mine  the local values of the macroscopic quantities. Of practical interest, however, are the 
number flux I n and the heat flux Iq averaged over a cross section of the channel: 

+1/2 
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where the thermodynamic forces are chosen in the form [i] 

Xn =--kv, Xq =--r/To. (ii) 

In accordance with the fundamental assumptions of the thermodymanics of nonequilibrium 
processes in discontinuous systems [6], the reciprocity relation Lnq = Lqn must be satisfied 
for the cross coefficients over the whole range of Knudsen numbers. 

For numerical calculations it is convenient to use dimensionless quantities which are 
related to the kinetic coefficients by the following equations: 

{ m 1112k L G -  [ m ~,1~ k . G=t:Gs K = '  "=-t'2-G) K '~ '  
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The effect of thermomolecular pressure and the mechanocaloric effect are important 
special cases. The first is a stationary state in which the temperature gradient is kept 
constant and a corresponding pressure gradient is established in the system. This state is 
characterized by the absence of a total number flux averaged over a cross section of the 
channel, i.e., I n = 0. Then it follows from Eqs. (i0), (ii), and (12) that 

r 

6T ,; dp/p (13) 
'~ ---- E = ~ dT/T" 

The mechanocaloric effect is a stationary state of second order [6], and characterizes 
heat transport along the channel under a constant pressure gradient with no temperature gradi- 
ent (T = 0). 

It follows from Eqs. (i0), (12), and (13) that 

Lnq 
Iq = -~nnf n : -- ykTofn. (14) 

Thus, the universal indicator of thermomolecular pressure y also determines the magni- 
tude of the mechanocaloric effect. 
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To determine the fluxes (i0) and the indicator of the thermomolecular pressure (13) it 
is necessary to solve the system of integral equations (6)-(9). These equations are Fredholm 
equations of the second kind. Consequently, they can be solved by the Bubnov--Galerkin method 
[7]. In doing this the choice of the form of the trial functions for macroscopic quantities 
is important. It should be kept in mind that the profiles of the macroscopic quantities in 
an almost free-molecule regime are described exactly by the free terms of the integral equa- 
tions (6)-(9). Therefore, for the solution to contain the other limiting case (Kn << i), 
the choice of the form of the trial functions must be based on the behavior of the macro- 
scopic parameters in the almost contin~umf limit. Taking account of the symmetry of the prob- 
lem, the required functions UpT and Q~T)2(I = t, r, v) can)be written in the form of an in- 
finite series in even basic functions {y k} (k = 0, i, .... In particular, in the first 
approximation we can set 

~CO ,. ~ N ~(z~ k p,  T, l ~ t, r, V. (15) uh (y) , ~  a~ + bhy 2, "zk ~y; . - .  ~h , = 

The trial functions (15) have the form of solutions of the Navier--Stokes and heat-con- 
duction equations. The solution of an analogous problem for a monatomic gas [8] showed that 
this approximation introduces an error of no more than 1.5% over the whole range of Knudsen 
numbers, i.e., the method converges very rapidly. Evidently one should expect the same ac- 
curacy for a polyatomic gas. 

To d e t e r m i n e  t h e  c o n s t a n t s  a k ,  b k ,  and  c , i t  i s  n e c e s s a r y  t o  s u b s t i t u t e  t h e  t r i a l  
f u n c t i o n s  (15 )  i n t o  E q s .  ( 6 ) - ( 9 ) ,  and  t o  r e q u i r e  t h a t  t h e  e x p r e s s i o n s  o b t a i n e d  b e  o r t h o g -  
o n a l  t o  t h e  c h o s e n  b a s i s  f u n c t i o n s ,  w h e r e  t h e  o r t h o g o n a l i t y  c o n d i t i o n  f o r  a r b i t r a r y  f u n c t i o n s  
f and  g h a s  t h e  f o r m  

(/, g) _----_ ] / (y) g(y) dy = O. 
-1/2 

k(;) 
T h u s ,  t h e  q u a n t i t i e s  a k ,  b k ,  a n d  c a r e  f o u n d  by  s o l v i n g  a s e t  o f  f i v e  l i n e a r  a l g e -  

b r a i c  e q u a t i o n s .  H a v i n g  d e t e r m i n e d  t h e m ,  e x p r e s s i o n s  c a n  b e  f o u n d  f o r  t h e  f l u x e s  I n and  I q  
a n d  t h e  i n d i c a t o r  o f  t h e  t h e r m o m o l e c u l a r  p r e s s u r e  y .  The f i n a l  e x p r e s s i o n s  h a v e  a c u m b e r s o m e  
f o r m  and  a r e  n o t  c i t e d  h e r e .  The a s y m p t o t i c  e x p a n s i o n s  o f  t h e s e  e x p r e s s i o n s  f o r  t h e  two 
l i m i t i n g  c a s e s  a r e  o f  i n t e r e s t :  

a l m o s t  f r e e - m o l e c u l e  r e g i m e  (6 << 1) 

t 1 
G v = . ~  ( - -  In 6 + 0.6342 + 0.59086), Gr -- a---V-~(-- 0.5 In 6 - -  0. t829 § 0.59086), 

(16) 
s ( t )  GT, S(p S(p ~) ----- 0, S~ ) ---- 1 ( - -  2.25 l n 5  + t .4270 + t.47706), 

= = 2 V ~  
0 r ~ 4 = ~ Gv; 

almost continuum regime (6 >> i) 

1 I); 

@ = B 0 k 4  ~ - - 2 0 V ~ k ~ L ~ - - - ~ 5  + 5 Ao + 

h 1 
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The a s y m p t o t i c  e x p a n s i o n s  f o r  S (v) and S~ v) a r e  o b t a i n e d  f rom th e  e x p r e s s i o n s  f o r  S ( r )  
and S~ r )  r e s p e c t i v e l y  by r e p l a c i n g  t~e  s u p e r s c r i p t  r by v ,  ~ by ~ ' ,  and 6 by 6 ' ;  A t ,  ~ r , P a n d  
~v a r e  t he  t h e r m a l  c o n d u c t i v i t i e s  due to  t h e  t r a n s l a t i o n a l ,  r o t a t i o n a l ,  and v i b r a t i o n a l  de -  
g r e e s  o f  f r e e dom of  t h e  m o l e c u l e s  [ 4 ] .  

In  an a l m o s t  f r e e - m o l e c u l e  r e g i m e ,  Eqs.  (16) f o r  t h e  f l u x e s  Gp, GT, S~ t ) ,  and S~ t )  c o r -  
r e s p o n d  to the case of a monatomic gas. The internal components s~r) and ~v) of the heat 
flux produced by the pressure gradient are equal to zero in this regime, slnce-- there are no 
inelastic collisions between molecules -- the only cause of these components. 

With the exception of (17), Eqs. (17)-(22) were derived for the first time; they de- 
scribe heat and mass transfer processes of a polyatomic gas in a flat channel for 6 >> i, 
when collisions between molecules play a significant role. If the vibrational degrees of 
freedom of the molecules are not excited, the first terms for Gp, GT, and S T agree with the 
expressions in [i]. 

However, the conclusion in [i] that the effect of thermal transpiration depends only on 
the Eucken translational factor is not true. It follows from (18) that the second term (~6-=) 
includes also the internal components of the total Eucken factor. 

Macroscopic quantities were calculated numerically with an accuracy of not less than 
0.1% for any values of the rarefaction parameters 6 (0.01 ~ ~ 440). The values of the 
parameters ~, ~', B, and 6' were selected from experiments. The value of ~ was varied from 
0 (the slow exchange of energy between translational and rotational degrees of freedom of the 
molecules, T~ << Trr) to 1.2 (slight exchange of energies~ T n ~ Trr ) [4]. Since vibrational 
relaxation is a very slow process on the scale of the mean free path of the molecules (vibra- 
tional collision numbers are of the order I03-i07 [9]), the parameter e' was selected in the 

range 0-0.001. The values for 6 = PDrr/q and B' = PDvv/q (p = mn; Drr and Dvv are respec- 
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tively the coefficients for the diffusion of rotationally and vibrationally excited molecules 
through the unexcited molecules) were chosen equal to B ~ B' = 1.32, which is valid over a 
wide range of temperatures for nonpolar molecules [4, 9, I0]. 

A comparison of our results with the numerical solution in [i] showed that if the vibra- 
tional degrees of freedom of the molecules are not excited, then for identical input param- 

eters the maximum variance for Gp is 0.4% for 6 = 40, 2.8% for G T for 6 = 40, and 0.4% for S T 
for ~ = 5. Thus, as in the case of a monatomic gas [8], the Bubnov-Galerkin method converges 
rather rapidly. If the results obtained need to be refined, more complicated trial functions 
(15) must be chosen. 

It is of interest to consider the mechanism and to make numerical estimates of the con- 
tribution of the internal degrees of freedom of the molecules to the fluxes. In the absence 
of inelastic collisions, when ~ = ~' = 0 (the Eucken approximation), the thermal creep G T and 
the translational components of the heat fluxes S~ t) and ST(t) are the same as the results for 
a monatomic gas [8], and the internal components of the heat flux caused by the pressure gradi- 
ent are zero. Consequently, the internal degrees of freedom of the molecules contribute to 
these fluxes only when there are inelastic collisions. 

The internal components S~ r) and S~ v) of the heat flux resulting from the temperature 
gradient behave differently. These fluxes are due both to inelastic collisions between mole- 
cules and to the diffusive transport respectively of rotationally and vibrationally excited 

molecules. 

Let us estimate numerically the contribution of the internal degree of freedom of the 
molecules for various values of the rarefaction parameter 6. Calculation showed that the vi- 
brational degrees of freedom make a very small contribution (in comparison with the rotational 
degrees of freedom) to all the fluxes except S~. 

Poiseuille flow depends very weakly on the internal degrees of freedom of the molecules: 
Their largest contribution is 1.2% for 6 : i, ~ = 1.2 for a diatomic gas with rotational de- 
grees of freedom (c~/k = i). In this case Poiseuille flow is decreased. 

Figure 1 shows the relative contribution of the rotational degrees of freedom of dia- 
tomic molecules to the thermal creep G T for i) ~ = 30; 2) I0; 3) 5; 4) i; 5) 0.7; 6) 0.i; 7) 
0.07; 8) 0.01. The thermal creep decreases with increasing 6, and in the hydrodynamic limit 
is equal to zero. The relative contribution of the internal degrees of freedom increases 
with increasing 6. Thus, in the viscous regime with slip (6 = 30) G T becomes 16.5% smaller 
than G~ ~ the result for a monatomic gas, for an increase of e from 0 to 1.2. The decrease 
of the value of the thermal creep is explained by the transformation of part of the transla- 
tional energy of the molecules into internal energy in inelastic collisions. 

The result obtained contradicts the conclusion in [i] that the effect of thermal trans- 
piration (13) does not depend on the internal degrees of freedom of the molecules. Although 
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all the numerical procedures were performed correctly, the conclusion in [i] is wrong because 
of the wrong choice of variable input parameters. 

In [I] the total Eucken factor and its translational component were chosen as input param- 
eters. However, it is known [2, 4] that each of these parameters is a function of the char- 
acteristic relaxation times, i.e., each depends on ~ and 3. 

2 and 3 show the dependence of the translational Sp(t), rotational s!r)'v and vibra- Figures 
tional Sp(v) components of the heat flux which result from the pressure gradient on the rarefac- 
tion parameter ~ and the value of ~ for a diatomic gas with c~/k = c~/k = I, and ~' = 0.001. 
On Fig. 2 for curve i) 6 = 30; 2) i0; 3) 5; 4) i; 5) 0.7; 6) 0.i; 7) 0.07; 8) 0.01. Curve 9 
describes the variation of S~ t) with ~ for ~ = 0.3. On Fig. 3 the solid curves are for S~ r), 
and the dashed curves are for ~v). For curve i) ~ = 0.3; 2) 0.6; 3) 1.2. 

degrees of freedom to Sp(t)is rather large (Fig. 2). The contribution of the internal 
For ~ = i0 and ~ = 1.2 the translational component of the heat flux is 34% smaller than S~~ 
the value for a monatomic gas. 

presence of the heat fluxes S~ t), S~ r), and S~ v) is a purely kinetic phenomenon, oc- The 
curring only in a rarefied gas. They are not present in the continuum limit, and in Figs. 2 
and 3 they clearly approach zero. Close to the free-molecule limit (16) heat transport occurs 
only by the ,translati~ motion of the molecules. This means that in the intermediate regime 

S~ r) and S~ v) must have a maximum, which is seen in Fig. 3. With an increase in the the fluxes 

parameter ~ the peak for the flux S~ r) is displaced toward smaller 6 This is accounted for p 
by the fact that with an increase in the fraction of inelastic collisions, the rotational de- 
grees of freedom of the molecules are excited more quickly, and the flux S~ r) reaches a maxi- 
mum for a less dense medium. If the parameter ~' were varied over wider llmits, q a ~~ 
displacement of the peak would be observed for S(v) also. It is clear that S~ v) decreases 
with increasing ~; this shows the dependence of ~he vibrational component of the heat flux on 
the fraction of translational--rotational transitions during intermolecular collisions. 

Figure 4 shows the dependence on 5 of the total heat fluxes S~ V for a diatomic gas with 
rotational and vibrational de~rees of freedom (curve i- ~ = 0 3 ~' = 0 001 ~r/~ _ ~v/~ = i~ 

. . . .  r S T for a dlatomzc gas wlth only rotatlonal degrees of freedom (curve 2, ~ = 0.3, cv/k = i), 
and a monatomic gas (curve 3). Curves 3 and 4 describe, F@sp@c~ively the variation of S~ t) 
and Si r) for a gas with rotational degrees of freedom, and S~ L) , S! r) , S(v) for a gas with rotation- 

�9 T T - al and vibratlonal degrees-of freedom of the molecules. The Fourier heat-conduction law holds 
for each of the components of the flux S~ t), s~r), and S~ v) for 6 >> i. In an almost free- 
molecule regime the fluxes S~ r) and S~ v) are also different from zero (16), since rotation- 
ally and vibrationally excited molecules diffuse through the unexcited molecules. 

Figure 5 shows the relative contribution of the internal degrees of freedom of the mole- 
cules to the total heat flux S~ v resulting from a temperature gradient for a gas with rota- 
tional and vibrational degrees of freedom (~' = 0.001, c~/k = c~/k = i, solid curves), and 
to S~ for a gas with only rotational degrees of freedom (c~/k = i, dashed curves) as a function 
of ~ for various values of the rarefaction parameter 6 [STo is the heat flux for a monatomic 
gas. For curve i) 8 = 0.i; 2) 0.I; 3) i; 4) i0; 5) 30]. It is clear that the total heat 
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flux produced by the temperature gradient depends strongly on the internal degrees of freedom 
of the molecules for all values of ~. For S~ V their contribution amounts to 63 to 89%, and 
for S~ from 27 to 44%. The greatest difference T from the result for a monatomic gas occurs 
near the free-molecule limit (6 = 0.01). This is accounted for by the large contribution of 
the diffusive transport of rotationally and vibrationally excited molecules to the heat flux 
in this regime. With an increase in the fraction of inelastic collisions, the total heat 
flux is decreased, as can be seen from Fig. 5. This occurs because with an increase in ~ the 
translational component S~ t) is decreased more than the internal component of the heat flux 
S~ r) is increased (Fig. 6, • = 30; curve i is for S~ t), 2) s~r); 3) SSV)). 

In conclusion we note that our results can be used to justify and design experimental 
methods for determining the characteristic relaxation times in polyatomic gases. 
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